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Context-tree modeling of observed symbolic dynamics
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Modern techniques invented for data compression provide efficient automated algorithms for the modeling
of the observed symbolic dynamics. We demonstrate the relationship between coding and modeling, motivating
the well-known minimum description length~MDL ! principle, and give concrete demonstrations of the
‘‘context-tree weighting’’ and ‘‘context-tree maximizing’’ algorithms. The predictive modeling technique ob-
viates many of the technical difficulties traditionally associated with the correct MDL analyses. These symbolic
models, representing the symbol generating process as a finite-state automaton with probabilistic emission
probabilities, provide excellent and reliable entropy estimations. The resimulations of estimated tree models
satisfying the MDL model-selection criterion are faithful to the original in a number of measures. The mod-
eling suggests that the automated context-tree model construction could replace fixed-order word lengths in
many traditional forms of empirical symbolic analysis of the data. We provide an explicit pseudocode for
implementation of the context-tree weighting and maximizing algorithms, as well as for the conversion to an
equivalent Markov chain.
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I. INTRODUCTION

We observe a time-ordered symbol streamS
5$s1 ,s2 ,s3 , . . . ,sN%, which is either quantized from
continuous-valued observations or measured directly, e
element from an alphabetA, and expressible ass
P$1,2, . . . ,uAu%. The distribution of multisymbol words pro
vides information about time-dependent structure and co
lation, just as, with continuous nonlinear data, time-de
embedding provides a vector space revealing dynamica
formation. Our goal is to construct compact and relia
models of the predictive probability distribution, the evol
tion law of the implied information source
P(st11ust ,st21 , . . . ).

In any inductive inference of models from finite observ
data, balancing complexity with apparent predictability, is
key issue. Excessive free parameters in a highly gen
model class~more complexity! overfit sample fluctuations
and give models that fail to generalize to unobserved d
despite low error on the fitted sequence. Beyond more c
ventional techniques such as cross validation or other fo
of data withholding and testing, the minimum descripti
length ~MDL ! principle @1# provides an information-
theoretical solution. Though there are various implemen
tions differing in detail, the central theme is to summar
overall performance in thedescription lengthas the informa-
tion required to describe data relative to some model plus
information necessary to specify that model and its para
eters are out of a broader class of models. Reduced to p
tice across a wide range of regression and modeling ta
~e.g., Ref.@2# in dynamical systems!, the MDL principle has
been demonstrated to give sensible and consistent res
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usually equaling or outperforming traditional and often mo
ad hocmodel selection criteria.

Given modelp̂u(•ust ,st21 , . . . ), a two-part codelength
is

DL~u!5Lp̂~S!1L~u!5(
i 50

N

2 log p̂~si 11usi ,si 21 , . . . !

1L~u!, ~1!

with the MDL model p̂MDL5arg minp̂u
DL(u). The descrip-

tion length and entropies are in units of bits when logarith
are base 2, which will be assumed for the remainder of
paper unless denoted otherwise. The primary difficulty
MDL implementation is evaluating the complexity cost
model classes. Model classes frequently have both disc
~e.g., number and kinds of parameters! and continuous~pa-
rameter values themselves! degrees of freedom. Accountin
for the model cost of continuous parameters is usually m
difficult than for discrete parameters.

The technology of ‘‘sequential’’ coding techniques mo
vates a solution to account for parametric complexity. Su
algorithms are adaptive, i.e., after processing some am
of observed data they reestimate models of the sourc
improve their performance. After encodingt symbols, we
denote the best model having usedonly the previously ob-

served dataasP̂t(•ust ,st21 , . . . ,s1). Then, the next symbo
st11 may be encoded with, for example, an arithmetic co
@3#, with cost 2 log P̂t(st11ust , . . . ). The internal model is
subsequently updated to reflect knowledge ofst11. The out-
put of the coder may be transmitted over a hypotheti
channel and causally decoded at the receiver. At timeN, we
have a good model of the source but more importantly,
codelength
©2002 The American Physical Society09-1
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L5 (
t50

N21

2 log P̂t~st11ust , . . . ! ~2!

implicitly includes the complexity cost because all inform
tion necessary to replicate the input data has been trans
ted, even though no explicit encoding of the model para
eters or the structure was necessary! MinimizingL is the
‘‘sequential minimum description length’’ principle.

An example is helpful. Consider independent symb
drawn from an alphabetA with a fixed but unknown distri-
bution pk ,kP1•••uAu. Having observed the countsck , the
maximum-likelihood estimator ofp is the obvious p̂k
5ck /N. The negative log likelihood is

LML5(
k

ck(2 log pk̂)5N( 2 p̂k ln p̂k5NH~ p̂! ~3!

is not a fair codelength as it assumes that one can encod
early symbols already knowingp̂. Instead encode sequen
tially with the distribution

p̂k5
ck1b

(
j

~cj1b!

,kP1•••uAu, ~4!

whereb.0, with ck being the accumulated counts of prev
ously observed symbols. Positiveb ensures finite2 ln p̂
whenck50. The net codelength

LPMDL5(
j 51

N

2 ln p̂~sj ! ~5!

is realizable. For the binary alphabet,uAu52, b51/2 is op-
timal, resulting in a parametric redundancy~excess code-
length versus entropy,L2Nh) of r< 1

2 logN11 independent
of the distribution, and is known as the Krichevsky-Trofim
~KT! estimator@4#. For uAu.2 andb5” 1/2, the redundancy
may depend on the underlying parameters, but in all ca
there is a leading term proportional to logN, so that the per
symbol redundancyr(s1 , . . . ,sN)/N→0 asN→` ~see also
Ref. @5#!. Asymptotically, the codelength per symbol a
proaches the entropy rate, and thus this isuniversal compres-
sion for independent identically distributed~iid! discrete
sources. Moreover, the asymptotic rate achieves the best
sible leading term (k/2) logN @6# for any source withk pa-
rameters.P̂(S),22L(S) is a coding distributionfor the se-
quenceS itself, satisfying the Kraft inequality.~We use the
symbol, for definitions.!

II. CONTEXT TREES

We model more complex sources than the trivial one j
discussed withcontext trees. A tree machine~Fig. 1! is a
subclass of finite-state automata with stochastic emis
probabilities and deterministic state transitions, given
emitted symbol. One follows recent symbols~the context!
down the tree~deeper corresponding to more ancient sy
bols! and upon matching a terminal node, defines the st
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The state emits independent symbols with a certain distr
tion. A tree with all nodes at depthD is a D-order Markov
chain.

Consider estimating from the data a tree model wh
topology alone is known. Every terminal nodej retains
countsck

j and with Eq.~4! an estimatorp̂ j . The tree model’s
estimatep̂(st11ust ,st21 , . . . ) ateach time is thatp̂m whose
nodem matches the recently processed symbols. Each n
accumulates its codelength as Eq.~5! denotedLe , with the
sum L5( jLe

j a fair codelength for the source—given ana
priori topology.

The nontrivial issue, of course, is estimating a suita
topology for the data, as that directly addresses the comp
ity versus predictability issue, whether to use a shallow t
whose nodes collect more data and hence are better
estimators or to use a deeper tree because it is necessa
distinguish distinct states recognizable from the data. Th
are 22D

topologies of binary trees with maximum depth n
larger thanD; for any but the smallestD, choosing among
them would appear to be prohibitively expensive. T
context-tree weighting~CTW! algorithm by Willems, Sh-
tarkov, and Tjalkens@7# provides a simple and clever recu
sive algorithm that performs an optimalweightingover trees
in time proportional toD, resulting in a general coding algo
rithm with the excellent compression performance and
ceptable computational cost. The upper bounds on red
dancy ~relative to any tree source! are pointwise for any
sequence and not only in probability. Willems proves in R
@8# that the infinite-depth method is universal for stationa
ergodic, binary source, and achieves the Rissanen lo
bound on redundancy@(k/2) logN# for finite memory tree
sources~includes Markov chains!. Although not stated in
Ref. @8#, universality is also true for nonbinary finite alpha
bets with an estimator like Eq.~4! @9#. CTW is further dis-
tinguished among the other universal context-tree meth
by achieving this bound plus only a constant even for fin
length strings and without arbitrary free parameters.

We present the CTW algorithm. One dynamically builds
tree for all previously observed contexts, retaining counts
every node. Consider weighting between a parent node w
context s and its childrencs. CTW recursively mixes the

FIG. 1. Example of a small context tree for a three symb
alphabet. Internal nodes~nodes with deeper children! are the root
node A, C, and AC, and terminal nodesAA,BA,CA,B,BC,CC.
Descendants ofAC continue off the figure. Each node accumulat
counts of future symbols and internal code lengths.
9-2
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local estimator at any node and the weighted estimator
all children:

Pw
s,

1

2 FPe
s1 )

cPA
Pw

csG . ~6!

If no children are present,Pw,Pe . At the rootl, Pw
l (S) is

the coding distribution forS with LCTW(S)52 log Pw
l(s) its

codelength. Nodes storeLe andLw and implement Eq.~6! as

Lw
s 52 log Pw

s 511min(Le
s ,Lc)2log(1122uLe

s
2Lcu), with Lc

5(cLw
cs .

This code is incrementally updatable. Starting from t
deepest matching node, one updatesLe with 2 log p̂(st11),
and subsequently increments the locally storedck with the
knowledge ofst11. Then, each node’s parent also updates
Le with the new observation and itsLw from the updated
child, accumulating the new observation, and proceeding
shallower nodes until the root node is reached. To ens
causal decodability, it is important to do so in this ord
Each observation requires at mostO(D) computation as only
nodes matching in the current context will change.

Reference@7# assumes a maximum depthD and its coder
transmitsD symbols verbatim to specify the starting conte
Reference@8# extends CTW to an arbitrary depth. Befores1
there is a semi-infinite past of an additional symbol:S
5•••ees1s2•••sN . The tree is now (uAu11)ary, but ase is
never coded, nodes still storeuAu counts. New nodes ar
added for the full history back to thee, naively generating a
large tree with storage complexityO(N2). However, most
deep contexts will be part of a long ‘‘tail’’ of a single obse
vation, whereLe5Lw . Avoiding explictly storing redundan
nodes by retaining a ‘‘tail flag’’ and pointer, this optimizatio
gives space complexity only slightly greater thanO(N) em-
pirically. @Reference@8# provides a strictlyO(N) method
that is more tricky to implement.# The EPAPS archive asso
ciated with this paper provides a pseudocode document a
software@10# demonstrating the tail-optimized infinite-dep
CTW algorithm. Though it appeared simple, we found t
correct concrete implementation was not particularly evid
from the available literature sources that were essentially
oretical and concentrated exclusively on literal data comp
sion.

Predictors of any quantity estimatable at any node may
weighted by the same formulas. Given an incrementally
dated estimatorq̂ at each noden, define the weighted esti
mator,

q̂w~n!,
~22Le!q̂~n!1 S 22(

c
LwD q̂w~child!

22Le122(
c

Lw

, ~7!

now extending codelengths into more generalloss functions
that must be calculated predictively. Reference@11# shows
that this prediction method is nearly as good as the b
possible pruning of a decision tree with reasonable and m
conditions on the loss functions and the predictors. Wheq̂
is as Eq.~4! andLe the usual codelength, this recovers CTW
05620
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providing an explicit conditional estimator. One could fe
this distribution, calculated approximately in standard flo
ing point, into an arithmetic coder. Contrary to Refs.@7,8#,
arbitrary precision arithmetic~for Pw) is thus not required
for an explicit incremental coding with CTW.

CTW’s mixture of trees, though it provides an excelle
codelength, may be more cumbersome than a good si
tree model. ‘‘Context-tree maximizing’’@12# is a nonincre-
mental pruning of the full context tree after having seen

the data. DefinePp
s, 1

2 max(Pe
s ,)cPAPp

cs), hence

Lp
s,11minFLe

s ,(
c

Lp
csG . ~8!

If the first term of the minimum is taken, then the tree
pruned at this node. For tail nodes~those with exactly one
observation!, Lp511Le terminating the recursion. Prunin
must be applied to depth first. Thee-symbol trick similarly
applies here. The description of the tree’s topology is tra
mitted explicitly via the extra bit in Eq.~8!. Like CTW, prun-
ing is a universal compression algorithm@9# ~though requires
two passes! and provides the MDL model~with a reasonable
structural prior! over the tree sources. Compression is oft
only modestly worse than CTW, though never better, asLw
<Lp .

There is one free parameterb. Empirically testing on the
dynamical data, varyingb by 75% about the value which
minimizes the codelengthL, changesl by perhaps 2–5%, bu
the pruned trees usually change little.’’ As per the MDL pri
ciple, one may minimizeL over b ~there is almost always a
smooth global minimum! provided thatb is appropriately
encoded with the cost added toL.

This pruning is different from the other context-tre
source coding methods called ‘‘state-selecting’’ algorithm
e.g., Refs.@13–16#. With those, a codelength criterion sim
lar to Eq.~8! selects a singleencoding nodefrom all match-
ing nodes from the incrementally constructed tree. The pr
lem is that the methods proven to be universal~e.g., Ref.
@14#! are not the ones that are practically useful, the form
require excess free parameters or may have poor fi
sample performance. In our experience, the latter may h
small occupation number pathologies. CTW and the pru
tree version have none of these issues. Ronet al. @17# pre-
sented a top-down~rather than bottom-up! context-tree esti-
mation algorithm for stochastic sources, providing prov
performance bounds, though again at the cost of a numbe
free parameters.

A pruned context tree represents a stochastic@18# sym-
bolic information source terminal nodes are states. Each s
retains a distribution for emission of symbols, inducing st
transitions given that symbol and some past history of sta
It is not a first-order Markov chain when the identity of th
state and its emission distribution is insufficient to ful
specify for the transitions to the next state. Figure 2 sho
such a context tree. A tree machine’s topology may be
tended by appropriately grafting new children~with identical
p̂ as their parents! without altering the predictions of the
model; the probability assigned to any sequence rem
identical, hence it codes
9-3



r-
an
ca
hu
g
on
e
ll

pu
ra

te
e

be
e
u

x

om

he
en
e
na

rt

t of
a-
ny
le.
n
ata.
now
e a

an

-
sal
that
all

ith

h
for

ree

in

in
w
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identically. The criterion for equivalence to a first-order Ma
kov chain is that the topology of all subtrees must be ext
if the subtree head is laid over the root. This topologi
criterion is easy to describe but obscure to implement, t
we present in Ref.@10# a more practical, string-manipulatin
algorithm to extend trees to the Markov form. Markovizati
may significantly enlarge the tree. The number of add
states is finite, but the worst case expands it to a fu
branched tree with depth equaling the maximum of the in
tree. Fortunately, the expansion appears to be far less in p
tice.

Terminal nodesTi matching contexts at timei are now
states~enumerated 1, . . . ,Ns) with a ~sparse! transition ma-
trix for the first-order Markov chain,Pi j,P(Tt115 j uTt
5 i ). As e will never be emitted, states withe in contexts are
removed. Theinvariant distributionm of this chain~assumed
to have one simply connected component! is the eigenvector
with unit valuem5PTm. One may sum over the appropria
m j of the split nodes to find the invariant density of th
original tree machine. What transition probability should
used? Once a tree machine or Markov structure has b
estimated from the data, generally the better estimate to
for bootstrapping data from the model isp̂5c/N, not the
smoothed estimate. Encoding new sequences with a fi
model, of course, requiresp̂.0.

III. APPLICATIONS AND RESULTS

The entropy rate is an obvious statistic to estimate fr
an observed symbolic sequence. When symbolsX are dis-
cretized, with an ever finer partition, from an orbit on t
invariant density of deterministic dynamics, the Shannon
tropy rateh(X) of the symbolic sequence divided by th
discretization time step converges to the Kolmogorov-Si
~ks! entropyhKS , an invariant of a dynamical system.hKS
.0 defines chaos. Furthermore, for special sorts of pa

FIG. 2. Solid lines: a tree machine that is is not a Markov cha
Starting from state (A), emission of a ‘‘1’’ results in a history of
‘‘01’’ that only specifies enough history to get to (E), which is not
a terminal node. Dotted lines: additional tree node split from~A! so
that the full tree machine is equivalent to a Markov model. Start
from ~C! or ~D! emission of any symbol uniquely identifies the ne
state.
05620
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tions, termed ‘‘generating,’’H(X)5hks even for low preci-
sion symbolic alphabets. Practical issues make the limi
infinitely large alphabets inadvisable for ks-entropy estim
tion from finite sized datasets with as the occupation in a
bin tends to zero, making entropy estimation unreliab
Finding generating partitions is difficult enough for know
dynamical systems, much less observed symbolic d
Nonetheless, symbolic analyses of observed data are
commonplace and we feel context-tree methods provid
reliable and general means to estimate entropy rates.

With universal compression, the codelength provides
obvious estimator of the entropy rate

ĥCL,L/N, ~9!

since limN→`ĥCL→h by definition. From fundamental theo
rems@19,20#, ĥCL has non-negative bias because all univer
codes have redundancy. We desire entropy estimators
reduce this bias. First, this means using a coder with a sm
redundancy. For sources compatible with a tree source wk
free parameters~including finite-memory Markov!, CTW as-
ymptotically performs asLCTW'hN1(k/2) logN so that
ĥCTW'h1(k/2)(logN/N). By comparison, string-matching
algorithms ubiquitous in the digital computer industry~two
variants on Lempel-Ziv methods@21#!, converge asĥLZ77

'h1h(log logN/logN) and ĥLZ78'h1O(1/logN), clearly
slower thanhCTW. We assume logN redundancy conver-
gence to derive an estimator with lower bias than Eq.~9!. A
sequential coder provides incremental codelengths:C(k)
,2 log p̂(sk)5L(k11)2L(k). C(k) is most conveniently ex-
tracted from CTW from the difference ofLw

l before and after
an observation. AssumingL(s1 , . . . ,sN)'h1A logeN, we
assert that, on average,C(k)'@]L/]N#k5N5h1A/k.
Strictly, this is not true for any specific location, but wit
appropriately averaged sums we assume the equality
present purposes. We defineM,(k51

N C(k)(2k/N)5h(N
11)12A and eliminateA to give the estimator

ĥCL2,
S 1

2
logeND M2L

S 1

2
logeND ~N11!2N

. ~10!

We present a third estimator. The entropy rate of a t
machine or Markov chain with stationary distributionm is

h5(
i

m iH~Pi→* !, ~11!

with Pi→* the transition distribution, out from statei. Given
observations of transitions, we use a standard estimatorĥ for
iid distributions and weight it by the estimatedm i :
ĥMC,( im i ĥi . The plug-in iid entropy estimator,ĥML

52(kp̂ log2p̂ using p̂k5ck /N, is biased from below. The
correction unbiased to 1/N ~and independent of distribution!
has been derived independently numerous times@22#:

.

g
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ĥMLC,ĥML1(log2e)(M21)/2N with M the number of non-
zero P( i→*), which we estimate as the number ofck.0
actually observed. Our corrected estimatorĥMCC weights
ĥMLC by m. This corrects for the bias at leaves, but not
bias from estimating model structure and thusm from the
finite data. That would appear to be a very difficult quant
to correct in general circumstances; however, via simula
it typically appears to be less important than the bias on
leaf nodes.

We compare results to a recently proposed estimator@23#
that operates on an entirely different principle, string mat
ing, the core technology of dictionary-based universal cod
algorithms, e.g., Lempel-Ziv@24#. With time indexi and in-
tegern, we defineL i

n as the length of the shortest substri
starting atsi that doesnot appear anywhere as a contiguo
substring of the previousn symbols si 2n , . . . ,si 21. The
string-matching estimator isĥSM, logn/(n21(i51

n Li
n) Since

ĥSM does not arise from an actual lossless code, it is
necessarily biased from above, unlikehCL . It is not neces-
sarily unbiased for any finiten either, however. To imple-
ment it with N observed symbols, we first remove a sm
numberD of symbols off the end and then split the rema
ing into two halves. String matching begins with the fir
element of the second half, (N2D)/211, and examines the
previousn5(N2D)/2 characters. The lengthD excess pad-
ding is necessary to allow string matches from the end lo
tions of the match buffer.D is presumed to be a few time
longer than the expected match length^L&' logn/h.

Table I shows results on simple systems. The context-
estimators perform well in all cases, whereas theĥSM per-
forms surprisingly poorly on high entropy cases. Even
deterministic systems where one might expect string ma
ing to prevail, context-tree methods are superior. The pru
context tree induces a deterministic state machine on p
odic data;ĥMC is thus zero on these sets. The next system
a first-order Markov chain withuAu53, with two cases, the
state directly emitted and not. The transition matrix is

M5F 0 1/3 2/3

1/4 0 3/4

2/10 0 8/10
G , h~M !'0.7602. ~12!

We estimate entropies from finite samples of simulation.
ther the state itself is emitted (uAu53), or 0 or 1 is emitted

TABLE I. Compression performance of algorithm on vario
simple inputs: random and simple deterministic cases.

System h N ĥSM2h ĥCL2h ĥCL22h

iid uAu52 1 104 20.097 0.00077 20.00053
iid uAu55 ln25 105 20.386 0.00042 0.00013
Period 3 0 57 0.376 0.226 20.036
Period 3 0 1824 0.0237 0.0112 20.000803
Period 4 0 92 0.272 0.193 20.01910
Period 4 0 2944 0.0156 0.00946 20.00523
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(uAu52) depending on whether the first or second nonz
transition is taken in each row. In the first case, the st
structure is directly observable~and the pruning method
finds the first-order Markov structure!. In the the latter
case—a hidden Markov model—approximate proxies for
state are automatically reconstructed by the modelers. Fig
3 shows estimators on resimulations. The context-tree m
ods outperform the match length estimator: the resamp
distribution of estimates from tree methods includes the t
value, whereas for theĥSM truth lies significantly outside its
distribution. The results are similar on other artificial chain
both time reversible and not.

The next example is the logistic mapxn115 f (xn)51
2axn

2 . In continuous space, the map is so simple, it is ne
a challenge to model, but once discretized it is not trivi
Symbolizing at the critical pointx50 gives a generating
partition for 0,a<2, and by the Pesin identity,h5hKS
5l with l the Lyapunov exponent on an ergodic trajecto
l5 limN→`( i 51

N log2uf8(xi)u. We estimatehKS via l on a very
long (106) trajectory. The lower panel of Fig. 4 shows resu
in a generic chaotic region,a51.8. Compared to the

FIG. 3. Entropy estimators~mean6 sample standard deviation!
evaluated from 100 samples of Markov chainM1 for L5500 ~top!,
L55000 ~bottom!. Solid circles are foruAu53. From left to right,

estimators areĥSM ,ĥCL ,ĥCL2 ,ĥMCC followed by the actual entropy
rate.

FIG. 4. Entropy estimators~mean6 sample standard deviation!
evaluated from 100 samples of discretized logistic mapx(n11)
512ax(n)2, a51.405 ~upper!, and a51.8 ~lower!. N55000
~circles! andN5500 ~diamonds!.
9-5



ta

m
th

la
is

re

in

un
ib
p

t
th
r

ns
e
ta
i

ri
o
a

n

u
ls

ns
bu

s
d
om
en

r
n

he
y

A

c

ut
-
er

an

een
n.

ion
to
We
sti-

the
sful

ni-

dd
al
-

n a
a
is
a
,
e,
lso
si-

i-
us-

b-
ns,
te

er
t of
ly
ls

.
ples

ity
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previous systems, the estimated model structure is subs
tially more complex~more important deep nodes! hence the

difference betweenĥCL andĥCL2 or ĥMCC is larger sinceĥCL

contains more model redundancy. The match length esti
tor performs well here, but the bias is still smaller wi

ĥMCC. The upper panel of Fig. 4 shows results ata
51.405, only slightly above the period-doubling accumu
tion point, i.e., the ‘‘edge of chaos.’’ Here the entropy rate
positive but small, and thus the effective depth of the t

~complexity! grows much larger. AgainĥMCC provides the
least biased estimate, somewhat surprising again as the
namics exhibit many long near repetitions where str
matching should be good.

Good compression performance implies an upper bo
on relative entropy between the true and estimated distr
tions, hence good compressors are good modelers. The
symbol coding redundancyN21r5L/N2h is an estimate of
the Kullback-Liebler distanceD(piq) between the true and
the estimated probabilities, and thus the estimated and
true stochastic dynamical systems. Most applications of
empirical symbolic dynamics in the literature explicitly o
implicitly use fixed-order Markov models, e.g., estimatio
of fixed-length word probabilities. The MDL context tre
provides an explicit symbolic predictive model from the da
and should be substitutable for fixed-order Markov models
most circumstances and usually provide equal or supe
performance. We compare redundancy of the variable c
text trees to fixed-order Markov models, i.e., trees where
probability estimates occur at a fixed depthD. Its codelength
is the sum ofLe at all extant nodes of the full depthD tree,
plus that of the one structure parameterD, which the classi-
cal Elias delta code@25# may encode in no more tha
L integer(D)511 log(D11)12 log log 2(D11) bits. The Mar-
kov model codelength is thusLMM(D)5L integer(D)
1(NodesLe . We include the startup costs similarly with thee
construction. This is a fair codelength because we co
transmit the dataset with this number of bits. We thus a
claim a MDL model selection criterion for fixed-order chai
using sequential coding. If one wishes to examine distri
tions of lengthW words, then withD* 5arg minDLMM(D),
the appropriateW is D* 11.

Table II shows average redundancies from 100 sample
the logistic map fora51.8, in a generic chaotic regime, an
a51.405 barely above the chaotic transition. Estimated fr
a long ergodic sample via the Lyapunov exponent the
tropy rate ishks50.5838 bits/symbol fora51.8 and hks
50.068 050 for a51.405. The weighting tree estimato
~CTW! is superior, followed closely by the MDL tree the
the Markov chain with the optimal orderD* . For fixed-order
Markov chains,D* depends significantly both onN ~not
shown! and the structure of the dataset. Whena51.405, the
typical D* found is surprisingly deep, on an account of t
significant stretches of ‘‘near periodic’’ orbits exhibited b
the map close to the edge of chaos. For instance,D* 524,
implies a naive 224 bins, far larger than the number of data.
typical ‘‘rule of thumb’’ for guessing at the ordera priori by
requiring a certain estimated minimum bin occupation su
as D' log2(2N) may be quite flawed. SelectingD with the
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MDL principle and sequential coding is a significant win, b
it takes little extra effort to find the MDL variable-order con
text tree, which almost always outperforms the fixed-ord
tree.

Unlike string matching, context-tree methods provide
explicit probability model and thus we maysimulatefrom it.
We fix the estimated model after all the input data have b
observed, and resimulate from its probability distributio
That may be full CTW via Eq.~7! or, more easily, the state
machine defined by the pruned tree or Markovized vers
thereof. We show examples of their ability to capture and
replicate nontrivial features of some observed streams.
compare various statistics from resimulations from an e
mated model to those evaluated on a long sequence from
actual dynamical system. We demonstrate the succes
generalizing modeling power for trees beyond simply mi
mizing the compression rate~for which they are explicitly
designed! and that modeling and simulation appear to a
few artifacts. We do not claim that most natural dynamic
system ‘‘are’’ strictly in the class of finite-depth tree
structured information sources~tree machines!, but suggest
that such models may often be good approximations give
stable statistical estimation method. Simulation—using
MDL-pruned tree as a stochastic information source—
simple and rapid. We initialize the history by sampling
state fromm and recording its implied context. Iteratively
emit a symbol according top̂ at each deepest matching nod
append to the buffer, and find the next context. One may a
simulate even more rapidly from the equivalent state tran
tion graph knowingP.

An immediate question is ‘‘what distribution is appropr
ate for emitting symbols given a state’’? We recommend
ing the naive estimator, i.e., Eq.~4! with b50, so that the
symbolic topology includes only transitions actually o
served in the input data. There may be forbidden transitio
and in a resimulation it would generally be wrong to crea
them, which would happen withb.0 or generally any prob-
ability estimator that assigns a finite probability to a nev
before seen symbol emission. This is the moral equivalen
resimulating from a discrete iid distribution by random
choosingwith replacementfrom the set of observed symbo
and no others. The densitym with the observed counts inP is

TABLE II. Coding redundancy per symbol for logistic map
Mean and sample standard deviation over 100 independent sam
of N510 000. Lower redundancy implies a superior probabil
model and/or a less complex model.

Compressor a51.8 a51.405

CTW 0.027060.0067 0.025360.0028
MDL tree 0.030460.0065 0.027560.0028
Markov optimal 0.047360.0070 0.043760.0029
Markov D54 0.122160.0062 0.115660.0004
Markov D58 0.047860.0070 0.081560.0020
Markov D512 0.109360.0088 0.059360.0088
Markov D516 0.209460.0102 0.045560.0102
gzip -9 0.099060.0043 0.253060.0048
bzip -9 0.075260.0041 0.322260.0079
9-6
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the limit of such a simulation. It may seem inconsistent
useb.0 for compression andb50 for simulation, but it is
not unreasonable. For the first case, one is computing a q
tity that is nearly the log likelihood of the observed data a
the estimated parameters give only a prior distribution
parameters before data have been seen. For the second
maximizes thepost-hoclikelihood of the emission param
eters of thegivendata already observed and the topologi
structure already estimated, i.e.; a classical statistical pr
dure. A universal coding algorithm must assign a probabi
to any possiblestring in the alphabet, but a simulation
obligated to assign positive probability only to those strin
that may be emitted from the model. Nevertheless, the is
of whether to useb50 or b.0 for simulation has a univer
sally correct answer, as choice is a matter of statistical
sumption and viewpoint.

We may represent a symbolic sequencesi
P$0,1, . . . ,uAu21% as a sequence of points in the symbo
plane (xi ,yi)P@0,m#3@0,m#;m5(uAu21)/(auAu21) with

~xi ,yi !,S (
k51

`
si 112k

akuAuk
,(
k51

`
si 1k

akuAuk
D .

We define the projection of a symbolic sequence on to
plane as asymbologram. The x coordinate of a point repre
sents the past history with smaller deviations correspond
to more ancient symbols, and they coordinate the future in
the similar way. A symbolic information source produces
characteristic geometrical set, the symbologram, in ro
analogy to the invariant set of a dynamical system in c
tinuous space. Fora51, there is guaranteed to be a uniq
correspondence between the points in the symbolic plane
the symbol sequences@26#. Furthermore, fora51, the frac-
tal information dimensionD1 of the symbologram scale
with the Shannon entropy:D152h/ log uAu. The symbolo-
gram summarizes both the stationary distribution of the sy
bols and the conditional predictive distribution, i.e., the ev
lution law. Figure 5 showsa51 symbolograms for the
logistic map, and a simulation from a tree estimated from
different sample of length 1000 of the original system. Th
is obviously a quite substantial resemblance between the
parent invariant densities between them, meaning that
probability of seeing a string in the original is quite close
that assigned to it by the tree model. That, of course, is
goal of source coding. Estimated fromN510 000, the fig-
ures are nearly visually identical.

One might evaluate a Kolmogorov-Smirnov~KS! test for
significance in the difference in cumulative distribution
given 10 000 points the KS test does indeed accept the
hypothesis forx or y. In practice, though, rejection is almo
certain asymptotically. Given sufficiently long samples~and
one may simulate arbitrarily long!, there will be sufficient
data that the test’s null hypothesis is violated even though
deviation in the cumulative distributions is small in an abs
lute sense. Only if the model givesexactly the same prob-
ability assignment as truth would the test always be
cepted, and that would occur only in the unlikely case wh
the system is a tree machine and the estimated probabi
happened to equal reality exactly. Statistical significan
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does not necessitate a large modeling deviation, howe
and universal coding provides a guarantee that the mo
will converge to the truth in some useful measure.

We turn to a more complicated system, discretiz
samples from the ‘‘Lorenz 1984’’ attractor; a tiny geophys
cal model with attractor dimensiond'2.5 @27#. Now the
discretization is not the~unknown! generating partition, yet
the projection down to a symbol stream still produces a n
trivial stochastic symbolic information source that we wi
to model. Because it was sampled from a continuous o
nary differential equation and not a map, the entropy is rat
low, h/ log2uAu'0.24. Consequently, the symbologram wi
a51 is thus rather sparse and we thus display in Fig. 6
original and simulacrum symbolograms witha51/2. The
estimated context tree had approximately 200 termi
nodes; 400 after Markovization.

FIG. 5. Symbologram of a sample of discretized logistic m
time series ata51.8 ~left!, and from simulation from MDL tree
model estimated on a distinctN51000 length dataset.

FIG. 6. Symbologram (a51/2) of output from Lorenz 1984
@27# model heavily discretized~left!, and from simulation of context
tree estimated fromN510 000 symbols~right!.
9-7
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Approximately matching symbolograms means that pr
abilities of words of consecutive symbols are successf
replicated. We now examine a more complicated ta
matching a statistical distribution not closely modeled by
fitting procedure. From a long sample, we extract therecur-
rence timeof some symbolic string, i.e., the time interva
between~nonoverlapping! observations of any arbitrary sym
bolic word. The distribution of recurrence times quant
longer-range dependences. Again for the logistic map aa
51.8, we estimated a tree from 10 000 observations
simulated a series of length 500 000, observed the distr
tion of recurrence times and compared to that observed o
identical-length set from the simulated dynamical syste
We compare the acceptance likelihood from t
Kolmogorov-Smirnov test, which compares the empirica
observed cumulative distributions. The previously mention
issue still applies, but the results are sufficient to show tre
and provides assurance that the model does not neces
fail to replicate the long-term as well as the short-term f
tures. Table III shows KS rejectionp values for recurrence
times of some arbitrarily selected strings. As the test assu
independence, after the second match of a pair is found~their
time difference being an observation!, we apply a length 500
dead zone before searching for the next string match to b
a pair.

IV. DISCUSSION AND SUMMARY

The context-tree construction and, in particular, t
equivalent Markov chain may provide a good estimate
the ‘‘e machine’’ of Crutchfield and Shalizi@28#: a represen-
tation of a process consisting of the minimalcausal states
and their transitions. Their goal is to define firmly a use
and robust notion of ‘‘complexity’’ distinct from random

TABLE III. Kolmogorov-Smirnov test acceptance probabilitie
on observed distribution of recurrence times for various strin
comparing 500 000 symbols from logistic map to a simulation fr
a MDL tree estimated on 10 000 symbols. Recurrence distribut
of most strings matched, except for consecutive 1’s. The lower-r
block of strings involves a deterministic transition so that sequen
of L57,8,9 strings have identical distributions as 0110100 is
ways followed by 10.

String p value String p value

110 0.6048 101 0.4112
1101 0.5835 1010 0.4075
11011 0.4690 10101 0.5583
110111 0.1122 101010 0.9098
1101111 0.3081 1010101 0.7990
11011111 0.3172 10101010 0.3472
111 0.2270
1111 0.0424 01101 0.2376
11111 0.7474 011010 0.1633
111111 0.0014 0110100 0.4412
1111111 5.836131025 01101001 0.4412
11111111 0.0541 011010010 0.4412
111111111 0.0443 0110100101 0.1309
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ness; a quantification of the intuitive notion that both ve
deterministic ~fixed point and periodic motions! and very
random~iid noise! behaviors imply low complexity with the
‘‘interesting dynamics’’ possessing higher complexity. A
cording to Ref.@28#, a causal state is an equivalence cla
over histories so that all members of the class have the s
conditional probabilistic distribution of observables for th
infinite future. The complexity is then the Shannon entro
of the distribution of causal states observed weighted by
measure of the process. It quantifies ‘‘how much informat
do I need to specify to set the current state so that I m
optimally predict the future,’’ i.e., the quantity of historica
information stored in the system. White noise processes h
one state, periodic processes have only as many states a
period, and thus low complexities. Complex processes ha
of course, more internal states and thus complexity. O
point here is that the Markovized tree states satisfy the
teria of Ref. @28# for being a causal state, and we have
robust algorithm to find them from the observed time seri
Furthermore, the minimum description length principle giv
an explicit and attractive balance between ‘‘prescience’’ a
‘‘complexity,’’ which is essential to the inference of minima
causal state machines from finite amounts of data. The c
plexity measure isCm52( i 51

Ns m i log2mi over stationary
probabilitiesm i for those states automatically discerned
the context tree. As expected,Cm measure is zero for the
logistic map fora52 ~when the signal becomes random b
nary! and increases as the bifurcation parameter decrea
and diverges at the period-doubling accumulation point,
edge of chaos, where the system can no longer be mod
by the regular languages of finite depth context trees.

Crutchfield and Young@29# and similarly, Carassco an
Oncina @30#, considered extracting probabilistic automa
from observed data. Their constructions are quite differe
relying on making equivalence classes among nodes in
prefix tree ~depth is forward in time! of the observed se
quences. Compared to the present MDL tree method th
are significantly more free parameters, including an u
known ‘‘depth’’ over which one considers whether nod
form equivalent states or not. We feel that determining t
depth automatically~and thus estimating word probabilities!
is precisely the most difficult part of model inference. Som
sort of criterion balancing statistics with complexity/depth
necessary, in addition. Checking the more general n
equivalence condition requires more computational eff
than context-tree pruning, but it does consider a wider cl
of models as internal nodes ‘‘across’’ branches may be fo
to be equivalent rather than only children versus pare
This might mean that a smaller machine could be fou
implying lower complexityCm . Perhaps a MDL selection
criterion could be derived for a more general class
context-type models providing the best of both methods.

We suggest some examples of how the context-tree m
ods presented here could potentially improve a numbe
existing algorithms and analyses of data in the literatu
though it is beyond the scope of the present work to actu
perform all these analyses with new methods and quan
the improvement or lack thereof. In general, any situat

,

s
ht
es
l-
9-8



b
tl

tio
ea
s
u

on
a
a

b-
ow
c
io

liz

e’’

em

p-

u
b

ab

is

e

al
r
e

is
ic
e

.
e

x-
th

o
-
p

n
ze

ine

tan-
ub-
.
en-

t

py

re-
nt
ow

rity
ng
n-

e is

ef.
’’
d

non-
ble
m-
y-
hich

on

ion

er

CONTEXT-TREE MODELING OF OBSERVED SYMBOLIC . . . PHYSICAL REVIEW E 66, 056209 ~2002!
requiring a conditional entropy estimate should be amena
to the context-tree estimator, if the dynamics are sufficien
well described by a regular language or an approxima
thereof. Essentially, the influence of the past has to decr
sufficiently quickly. There are examples of dynamical sy
tems, which do not appear to satisfy this criterion in vario
forms, but in general any data analysis on sufficiently n
stationary dynamics is dubious from the start. The bound
of exactly which classes of dynamics are efficiently estim
able with context trees is not presently known.

Fraser@31# studied information-theoretic quantities in o
served noisy chaotic systems and pioneered the n
standard use of mutual information as a criterion for sele
ing time delays in continuous state-space reconstruct
given x(t) one estimates mutual informationI (xt1dt ;xt)
5H(xt1dt)2H(xt1dtuxt). The first local minimum is
deemed to be a good reconstruction parameter. Genera
beyond two scalars, thedifferential redundancy

R8~xt1dtuxt!,I ~xt1dt ;xt!5H~xt1dt!2H~xt1dtuxt!
~13!

is the amount of information in the new observationxt1dt ,
which is predictable from knowledge of the ‘‘current stat
given by the vectorxt5@xt ,xt21 ,xt22 , . . . #. Fraser shows
@31# that for data observed from a chaotic dynamical syst
as the discretization intervals approach zero~increasing al-
phabet! and the dimension of the conditioning vector a
proaches infinity,Rdt8 'A2(dt)hKS with hKS the Kolmog-
orov entropy rate, a dynamical invariant of the continuo
system. This formulation distinguishes the entropy caused
independent noise from chaos. Such noise is unpredict
but will havehKS50, becauseH(Xt11)5H(Xt11uXt).

Although we do not presently deal with the issue of d
cretization to symbolssi , we point out that it is trivial to
estimate the conditional entropyd steps ahead instead of on
by replacingsi 11 with si 1d in Eq. ~2! giving appropriateĥCL

andĥCL2 ~but notĥMC!! estimators for the second condition
entropy term in Eq.~13!. The first term is the zero-orde
entropy estimate, e.g.,Le /N at the root note of the tree. W
can thus estimateR8(xt1dtuxt) safely taking the limit of the
infinite conditioning context with arbitrary depth CTW. Th
circumvents the usual exponential explosion of bins, wh
practically limited the direct application of histogram-typ
information estimators in Ref.@31# beyond two dimensional

We may similarly estimate the conditional entropy b
tween the information sources,h(RuS) provided simulta-
neous observations (si ,r i), and replacingsi 11 with r i 1d in
Eq. ~2!. This important generalization resulting from an e
plicit model is not easily available to string-matching me
ods. Reference@32# addresses detecting whether or not tw
signals, e.g.,x(t) and y(t) are projections of the same dy
namical system. When it is so, the conditional entro
h(yt1dtuxt) has a minimum neardt50. In Ref. @32# the
authors use fixed-length words and estimate entropies
ively. We suggest using tree estimators in the symmetri
cross entropy
05620
le
y
n
se
-
s
-

ry
t-

-
t-
n,

ed

s
y
le

-

h

-

-

y

a-
d

h̄~d!5
1

2
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Our example is again the Lorenz 1984 model. We exam
correlation betweenx and z components, sampled atdt
50.16. To ensure a challenge white Gaussian noise of s
dard deviation half of the clean time series was added, s
sequently symbolized withuAu53 using equiprobable bins
Figure 7 compares results from context-tree methods to
tropy estimates from fixed-order Markov models~like a fixed
word length!. An arbitrary word length results in a significan
systematic bias. The shallow word (D54) correctly finds
conditional entropies tending to the unconditioned entro
ln23'1.58—no significant predictability—for largeudu, but
has insufficient discriminating power to discern much cor
lation neardt'0. Longer word lengths produce significa
overall biases in the level. Context-tree methods best sh
power without large systematic bias.

The present authors previously used@16# a state selecting
context-tree source modeler to test for dynamical stationa
by combining traditional frequentist tests at the ‘‘encodi
nodes.’’ An undesirable artifact is that early points get e
coded to shallowly because the choice of encoding nod
made sequentially. Thepost-hocMDL tree is a cleaner and
reliable method of finding the appropriate states. In R
@33#, Daw et al examined statistics comparing ‘‘forward
versus ‘‘backward’’ observations of symbolic words forme
from a time series. Linear Gaussian processes and static
linear transforms thereof produce statistically time-reversi
signals. Thus the observation of statistically significant te
poral irreversibility, as found in chaos or other nonlinear d
namics, precludes that class of signals, the same class w
is the null hypothesis of many ‘‘surrogate data’’ resimulati

FIG. 7. Symmetrized cross entropy estimates flow-precis
noisy x and z coordinates from Lorenz 1984@27# model, 20 000
samples atdt50.16. Curves without symbols are with fixed-ord

Markov with depthD54,8,12. Curves with symbols areĥCL and

ĥMCC . The context tree methods correctly findh' ln2uAu for udu
→`, still preserving a comparatively deep relative dip atd'0,
demonstrating dynamical state correlation.
9-9
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methods. Reference@33# gives a direct statistic and test fo
reversibility, bypassing the need for Monte Carlo simulatio
However, it used a fixed word length that was an arbitr
choice. Here we suggest using the MDL tree to find
proper choice of words, the terminal node contexts, and c
tinuing with the procedure of Ref.@33#. One would estimate
the tree structure from data comprising the time series
both forward and backwards. The MDL tree finds especia
predictable nodes; these states correspond to more clea
dence of ‘‘dynamics’’ and hence we expect them to be m
irreversible. Cover and Thomas@20# provide an explicit for-
mula ~4.40! for the entropy rate of a time-reversible Marko
chain. As an alternate method for detecting irreversibil
one could compare theĥMC on observed data to that ex
pected under the reversible hypothesis~where any time-
reversible Markov chain is equivalent to a random walk
an undirectedbut weighted graph!. The transition probabi-
lites on the discovered provides all the quantities needed

In a biological application, Steueret al. @34# examined the
entropy rates derived from a binary symbolization of int
spike intervals measured in paddlefish and crayfish mec
oreceptors. In this system predictability is modest, but
authors did find that certain higher-order Markov mod
~e.g., order 4 or 5! displayed superior predictability~lower
conditional entropy! than the low-order models, and that th
excess predictability was localized to a small number
symbolic contexts found to be reasonably experiment
stable across animal subjects. The authors had to validat
choice of Markov order with Monte Carlo surrogate da
techniques. A context-tree method would avoid the tedium
some validation simulations, moreover the MDL tree alg
rithm intrinsically attempts to pull out of the data from tho
particular contexts that give excess predictability. Th
choice of Markov order was based on comparing global
y
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tistics versus resimulation, but the object of desire is
indentification of individual states that are particularly pr
scient.

Lesher@35# symbolized interspike intervals in from a lam
prey neuron via a more interesting technique, i.e., fitting,
continous space, a vector of successive observations to
cally linear two-dimensional map and then reducing to d
crete symbols the eigenvalue plane that results with the s
bols corresponing to, e.g., ‘‘stable node,’’ ‘‘stable focus
‘‘unstable focus,’’ ‘‘direct saddle,’’ ‘‘flip saddle,’’ etc. There
was a significant correspondence between interesting q
tative changes in the observed time series dynamics and
symbol transitions, but the authors found that a first-or
model is insufficient, and suggested using a hidden Mar
model in future investigation. We suggest that in situatio
where there is no obvious intuitive external guidance for
effective size of the structure or complexity of the data,
adaptive context tree could be superior. Classical estima
of hidden Markov models by expectation maximization r
quires the structure be designeda priori and then the transi-
tion parameters estimated, though there are now adap
~but often slow! techniques in the literature.

We have introduced the use of modern source mode
techniques traditionally used for data compression for
purpose of analyzing observed symbolic time series fr
dynamical systems. The context-tree weighting and ma
mizing algorithms are theoretically attractive modeling tec
niques with good performance, one free parameter, and
cient implementation. Given a tree machine, we have
algorithm to convert it to an equivalent first-order Marko
chain that opens additional opportunitites. We demonstra
number of good performing entropy estimators and th
show the success of the tree methods on modeling obse
data via resimulation.
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