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Context-tree modeling of observed symbolic dynamics
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Modern techniques invented for data compression provide efficient automated algorithms for the modeling
of the observed symbolic dynamics. We demonstrate the relationship between coding and modeling, motivating
the well-known minimum description lengtliMDL) principle, and give concrete demonstrations of the
“context-tree weighting” and “context-tree maximizing” algorithms. The predictive modeling technique ob-
viates many of the technical difficulties traditionally associated with the correct MDL analyses. These symbolic
models, representing the symbol generating process as a finite-state automaton with probabilistic emission
probabilities, provide excellent and reliable entropy estimations. The resimulations of estimated tree models
satisfying the MDL model-selection criterion are faithful to the original in a number of measures. The mod-
eling suggests that the automated context-tree model construction could replace fixed-order word lengths in
many traditional forms of empirical symbolic analysis of the data. We provide an explicit pseudocode for
implementation of the context-tree weighting and maximizing algorithms, as well as for the conversion to an
equivalent Markov chain.
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[. INTRODUCTION usually equaling or outperforming traditional and often more
ad hocmodel selection criteria.
We observe a time-ordered symbol strear8 Given modelpy(-|s;,Si_1, . ..), atwo-part codelength
={s1,55,53, - .. SN}, Which is either quantized from is

continuous-valued observations or measured directly, each

element from an alphabetA, and expressible ass N .

{12, ... |A[}. The distribution of multisymbol words pro- ~ DL(8)=Lp(S)+L(8)=2>, —logp(si 1|si.Si-1, .. .)
vides information about time-dependent structure and corre- =0

lation, just as, with continuous nonlinear data, time-delay +L(6), )
embedding provides a vector space revealing dynamical in-

formation. Our goal is to construct compact and reliable

models of the predictive probability distribution, the evolu- V.Vlth the MDL modeIpMDLzarg mwpgDL(Q). The descrlp—
tion law of the implied information  source tion length and entropies are in units of bits when logarithms

P(Sts /S, 1, ... ) are base 2, which will be assumed for the remainder of the
In any inductive inference of models from finite observedPaper unless denoted otherwise. The primary difficulty of

data, balancing complexity with apparent predictability, is aVDL implementation is evaluating the complexity cost of
key issue. Excessive free parameters in a highly gener odel classes. Model classes frequently have both discrete

model class(more complexity overfit sample fluctuations €9, numtl)er anr(]j klndls g;eparame);a?ﬂd c(j:ontlrxjous{paj
and give models that fail to generalize to unobserved dat meter values themsely Gegrees or freedom. ceounting
despite low error on the fitted sequence. Beyond more co for the model cost of continuous parameters is usually more

ventional techniques such as cross validation or other formdifficult than for discrete parameters.

of data withholding and testing, the minimum description The technplogy of “sequential® coding technique_s moti-
length (MDL) principle [1] provides an information- vates a solution to account for parametric complexity. Such

theoretical solution. Though there are various implementa@/90rithms are adaptive, i.e., after processing some amount

tions differing in detail, the central theme is to summarize_Of observed_ data they reestimate mode_ls of the source to
overall performance in théescription lengttas the informa- improve their performance._ After encodlngsymbols, we
tion required to describe data relative to some model plus th8€note the best model having usedly the previously ob-
information necessary to specify that model and its paramserved data@sP(-[s,Si-1, - . . ,$1). Then, the next symbol
eters are out of a broader class of models. Reduced to prag-+1 may be encoded with, for example, an arithmetic coder
tice across a wide range of regression and modeling tasf8], with cost —logP(s1/s,...). Theinternal model is
(e.g., Ref[2] in dynamical systemisthe MDL principle has  subsequently updated to reflect knowledges,qf,. The out-
been demonstrated to give sensible and consistent resulisut of the coder may be transmitted over a hypothetical

channel and causally decoded at the receiver. At finwe

have a good model of the source but more importantly, the

*Electronic address: mkennel@ucsd.edu codelength
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N-1 root no history

L=§O —logP(sis4lst, - - -) 2

implicitly includes the complexity cost because all informa- (A (=] (e ] 1 step history
tion necessary to replicate the input data has been transmil
ted, even though no explicit encoding of the model param-
eters or the structure was necessary! Minimizings the

“sequential minimum description length” principle. (an) (ea) (oA ) (ac) (Bc) (cC] 2stephistory

An example is helpful. Consider independent symbols
drawn from an alphabeA with a fixed but unknown distri- s
bution p,,ke 1---|A|. Having observed the countg, the A

maximum-likelihood estimator ofp is the obvious f)k

=c,/N. The negative log likelihood is FIG. 1. Example of a small context tree for a three symbol
alphabet. Internal nodeggodes with deeper childrgrare the root
o cu(—logp:) =N — N Bu=NH(D 3 node A, C, and AC, and terminal node#®\A,BA,CA,B,BC,CC.
ML 2 A 9pi) Z Picin P P Descendants oAC continue off the figure. Each node accumulates
counts of future symbols and internal code lengths.
is not a fair codelength as it assumes that one can encode the

early svmbols already knowinf.. Instead encode sequen- The state emits independent symbols with a certain distribu-
-arty sy aready g- q tion. A tree with all nodes at depth is a D-order Markov
tially with the distribution

chain.
ot B Consider estimating from the data a tree model whose
E)kzk—,kel~~-|A|, (4) topology alone is known. Every terminal noderetains
> (c;+h) countsc, and with Eq.(4) an estimatop’. The tree model’'s
I estimatep(s;+1/S;,Si_1, - - . ) ateach time is thap™ whose

. . . nodem matches the recently processed symbols. Each node
where >0, with ¢, being the accumulated counts of previ- accumulates its codelength as &6) denotedL,, with the

ously observed symbols. Positie ensures finite—Inp sum |_:2j|_£5 a fair codelength for the source—given an

Whean=0. The net COde|ength priori topo'ogy_
N The nontrivial issue, of course, is estimating a suitable
L _ 2 —Inp(s) 5) topology for the data, as that directly addresses the complex-
PMDL™ & P(S ity versus predictability issue, whether to use a shallow tree

whose nodes collect more data and hence are better local
is realizable. For the binary alphabpd|=2, B8=1/2is op- estimators or to use a deeper tree because it is necessary to
timal, resulting in a parametric redundanégxcess code- distinguish distinct states recognizable from the data. There
length versus entropy,— Nh) of p<1 logN+1 independent  are 2° topologies of binary trees with maximum depth no
of the distribution, and is known as the Krichevsky-Trofimov larger thanD; for any but the smallesD, choosing among
(KT) estimator{4]. For |A|>2 andB+# 1/2, the redundancy them would appear to be prohibitively expensive. The
may depend on the underlying parameters, but in all casesontext-tree weightingCTW) algorithm by Willems, Sh-
there is a leading term proportional to INgso that the per tarkov, and Tjalken$7] provides a simple and clever recur-
symbol redundancy(sy, . .. ,sy)/N—0 asN—x (see also  sive algorithm that performs an optimakightingover trees
Ref. [5]). Asymptotically, the codelength per symbol ap- in time proportional tdD, resulting in a general coding algo-
proaches the entropy rate, and thus thisriszersal compres- rithm with the excellent compression performance and ac-
sion for independent identically distributedid) discrete ceptable computational cost. The upper bounds on redun-
sources. Moreover, the asymptotic rate achieves the best pogancy (relative to any tree sourgeare pointwise for any
sible leading termK/2) logN [6] for any source wittk pa-  sequence and not only in probability. Willems proves in Ref.
rameters.P(S)227 is a coding distributionfor the se- [8] that the infinite-depth method is universal for stationary,
quences itself, satisfying the Kraft inequalitWe use the ergodic, binary source, and achieves the Rissanen lower

symbol £ for definitions) bound on redundancl(k/2) logN] for finite memory tree
sources(includes Markov chains Although not stated in
Il. CONTEXT TREES Ref.[8], universality is also true for nonbinary finite alpha-

bets with an estimator like Eq4) [9]. CTW is further dis-

We model more complex sources than the trivial one justinguished among the other universal context-tree methods
discussed withcontext treesA tree machine(Fig. 1) is a by achieving this bound plus only a constant even for finite
subclass of finite-state automata with stochastic emissiofength strings and without arbitrary free parameters.
probabilities and deterministic state transitions, given an We present the CTW algorithm. One dynamically builds a
emitted symbol. One follows recent symbdtbe context tree for all previously observed contexts, retaining counts at
down the tree(deeper corresponding to more ancient sym-every node. Consider weighting between a parent node with
bols) and upon matching a terminal node, defines the stateontexts and its childrencs. CTW recursively mixes the
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local estimator at any node and the weighted estimators gfroviding an explicit conditional estimator. One could feed

all children:

1
A
Pu=3

Ps+ 1 PCS} (6)

ceA

If no children are presenkB, 2 P,. At the root\, PK(S) is
the coding distribution foiS with L-m/(S)= —log P“(s) its
codelength. Nodes stote, andL,, and implement Eq6) as

= —log PS=1+min(LS L) —log(d+2 - td),  with L
=3.L%.

This code is incrementally updatable. Starting from the

deepest matching node, one updatgswith —log p(s. 1),
and subsequently increments the locally stocgdvith the

this distribution, calculated approximately in standard float-
ing point, into an arithmetic coder. Contrary to R€f8,8],
arbitrary precision arithmeti¢for P,,) is thus not required
for an explicit incremental coding with CTW.

CTW'’s mixture of trees, though it provides an excellent
codelength, may be more cumbersome than a good single
tree model. “Context-tree maximizing['12] is a nonincre-
mental pruning of the full context tree after having seen all

the data. Defind®; <3 max(Pg,Il..APy), hence
Lg,Ec‘, LgS}

If the first term of the minimum is taken, then the tree is

Lf;é1+ min

®

knowledge ofs,. ;. Then, each node’s parent also updates itpruned at this node. For tail nodéhose with exactly one

L. with the new observation and its, from the updated

observatiop, L,=1+L, terminating the recursion. Pruning

child, accumulating the new observation, and proceeding tonust be applied to depth first. Thesymbol trick similarly
shallower nodes until the root node is reached. To ensurapplies here. The description of the tree’s topology is trans-
causal decodability, it is important to do so in this order.mitted explicitly via the extra bit in Eq8). Like CTW, prun-

Each observation requires at m@D) computation as only
nodes matching in the current context will change.
Referencd 7] assumes a maximum depfhand its coder

transmitsD symbols verbatim to specify the starting context.

Referencd8] extends CTW to an arbitrary depth. Bef@ge
there is a semi-infinite past of an additional symb8l:
=...€€5:S, - -Sy. The tree is now|@|+ 1)ary, but as is

never coded, nodes still stoté| counts. New nodes are

added for the full history back to the naively generating a
large tree with storage complexi®(N?). However, most

deep contexts will be part of a long “tail” of a single obser-

vation, whereL .=L,,. Avoiding explictly storing redundant

nodes by retaining a “tail flag” and pointer, this optimization

gives space complexity only slightly greater th@gN) em-
pirically. [Reference[8] provides a strictlyO(N) method

ing is a universal compression algoriti8 (though requires
two passesand provides the MDL modéivith a reasonable
structural prioy over the tree sources. Compression is often
only modestly worse than CTW, though never betterLgs
=L,.

'IPhere is one free parametgr Empirically testing on the
dynamical data, varying by 75% about the value which
minimizes the codelength, changes$ by perhaps 2—5%, but
the pruned trees usually change little.” As per the MDL prin-
ciple, one may minimizé over 8 (there is almost always a
smooth global minimumprovided thatB is appropriately
encoded with the cost added lto

This pruning is different from the other context-tree
source coding methods called “state-selecting” algorithms,
e.g., Refs[13-16. With those, a codelength criterion simi-

that is more tricky to implementThe EPAPS archive asso- lar to Eq.(8) selects a singlencoding nodérom all match-
ciated with this paper provides a pseudocode document andiag nodes from the incrementally constructed tree. The prob-
software[10] demonstrating the tail-optimized infinite-depth lem is that the methods proven to be universab., Ref.
CTW algorithm. Though it appeared simple, we found the[14]) are not the ones that are practically useful, the former
correct concrete implementation was not particularly evidentequire excess free parameters or may have poor finite
from the available literature sources that were essentially thesample performance. In our experience, the latter may have
oretical and concentrated exclusively on literal data compressmall occupation number pathologies. CTW and the pruned
sion. tree version have none of these issues. Boal. [17] pre-

Predictors of any quantity estimatable at any node may bgented a top-dowirather than bottom-ypcontext-tree esti-
weighted by the same formulas. Given an incrementally upmation algorithm for stochastic sources, providing proven
dated estimatog at each node, define the weighted esti- performance bounds, though again at the cost of a number of
mator, free parameters.

A pruned context tree represents a stochdst®] sym-
bolic information source terminal nodes are states. Each state
retains a distribution for emission of symbols, inducing state
transitions given that symbol and some past history of states.
It is not a first-order Markov chain when the identity of the
state and its emission distribution is insufficient to fully
now extending codelengths into more genéoak functions specify for the transitions to the next state. Figure 2 shows
that must be calculated predictively. Referer¢&] shows such a context tree. A tree machine’s topology may be ex-
that this prediction method is nearly as good as the bedtnded by appropriately grafting new childrewith identical
possible pruning of a decision tree with reasonable and milgh a5 their parenjswithout altering the predictions of the

conditions on the loss functions and the predictors. Wipen model; the probability assigned to any sequence remains
is as Eq(4) andL, the usual codelength, this recovers CTW, identical, hence it codes

(2 Le)q(n)+(2 2t |Gl chile

e+2 ZLW ,

Qu(n) 2 (7)
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tions, termed “generating,H (X)) =h,s even for low preci-
sion symbolic alphabets. Practical issues make the limit of
infinitely large alphabets inadvisable for ks-entropy estima-
tion from finite sized datasets with as the occupation in any
bin tends to zero, making entropy estimation unreliable.
Finding generating partitions is difficult enough for known

A)
N p=1/2

0,/' ! dynamical systems, much less observed symbolic data.

Nonetheless, symbolic analyses of observed data are now

® commonplace and we feel context-tree methods provide a
© D) p()=1/3 reliable and general means to estimate entropy rates.

With universal compression, the codelength provides an
obvious estimator of the entropy rate
(6) .
p(1)=3/4 p(=1 hco £L/N, 9)

FIG. 2. Solid lines: a tree machine that is is not a Markov chain

'since li h h by definition. From fundamental theo-
Starting from state A), emission of a “1” results in a history of M—=NeL=N by

“01” that only specifies enough history to get t&), which is not rems[19,20, h¢, has non-negative .bias because a}l universal
a terminal node. Dotted lines: additional tree node split ff@nso codes haye _redun_dancy._ We deswe'entropy estimators that
that the full tree machine is equivalent to a Markov model. Starting'€duce this bias. First, this means using a coder with a small

from (C) or (D) emission of any symbol uniquely identifies the new redundancy. Fo_r sources (_:O_mpatible with a tree sourcekwith
state. free parameter6ncluding finite-memory Markoy CTW as-

ymptotically performs aslrw~hN+(k/2) logN so that
identically. The criterion for equivalence to a first-order Mar- hery~h-+ (k/2) (logN/N). By comparison, string-matching
kov chain is that the topology of all subtrees must be extanalgorithms ubiquitous in the digital computer industtwo
if the subtree head is laid over the root. This topologicalyariants on Lempel-Ziv method1]), converge adh, 7

criterion is easy to describe but obscure to implement, thus~h+h(|og logN/logN) and A, z,g~h+O(1/logN), clearly

Bl to extond trees 1 the Markov form, Markovization SOWeT anhcry. We assume [o redundancy conver-
g ' ence to derive an estimator with lower bias than ©g. A

may significantly enlarge the tree. The number of addetge uential coder provides incremental codelengB&)
states is finite, but the worst case expands it to a fully, quent P , . 9
branched tree with depth equaling the maximum of the input- — 09 P(S)=L(k+1)—L(K). C(k) is most conveniently ex-
tree. Fortunately, the expansion appears to be far less in pragacted from CTW from the difference tf), before and after
tice. an observation. Assuminfi(s;, ... ,Sy)~h+AlogN, we
Terminal nodesT, matching contexts at timeare now assert that, on averageC(k)~[dL/dN]—n=h+A/k.
states(enumerated .1 . . No) with a (sparsg transition ma- Strictly, _thls is not true for any specific location, but Wlth
trix for the first-order Markov chainP;2P(T,,,=j|T, appropriately averaged sums XveNassume the equality for
=i). As e will never be emitted, states within contexts are Present purposes. We defird=2,;_,C(k)(2k/N)=h(N
removed. Thénvariant distributiony of this chain(assumed +1)+2A and eliminateA to give the estimator
to have one simply connected componastthe eigenvector

with unit valuex=PT . One may sum over the appropriate (Elo N) M—L

wj of the split nodes to find the invariant density of the N 2 G

original tree machine. What transition probability should be helo= 1 : (10)
used? Once a tree machine or Markov structure has been (ElogeN (N+1)—N

estimated from the data, generally the better estimate to use

for bootstrapping data from the model jis=c/N, not the We present a third estimator. The entropy rate of a tree

smoothed estimate. Encoding new sequences with a fixeghachine or Markov chain with stationary distributignis
model, of course, requirgs>0.
h= HP_y), 11
IIl. APPLICATIONS AND RESULTS Z i (Pio) @y
The entropy rate is an obvious statistic to estimate ffomy i, p.  the transition distribution, out from stateGiven
an observed symbolic sequence. When symbobre dis- b i ft i tandard estirfa
cretized, with an ever finer partition, from an orbit on the OPServations of transitions, we use a standard est

invariant density of deterministic dynamics, the Shannon en';Id d|str|blft|ons and wggh.t. it by the e§t|matefki:
tropy rateh(X) of the symbolic sequence divided by the mc=Ziuihi. The plug-in iid entropy estimatorhy,
discretization time step converges to the Kolmogorov-Sinai= — 2, p log,p using py=cy/N, is biased from below. The
(ks) entropyhgs, an invariant of a dynamical systeryg  correction unbiased to N/ (and independent of distributipn

>0 defines chaos. Furthermore, for special sorts of partihas been derived independently numerous tin2g]:
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TABLE |. Compression performance of algorithm on various — T L A B
simple inputs: random and simple deterministic cases. 0.8- +% {% {% o 7
I . ]
N N N <=
System h N hsy—h he —h heo—h 0.71 } %

iid |A|=2 1 1¢  —0.097 0.00077 —0.00053 06—ttt

iid |[A|l=5 In,5 1 —0.386  0.00042 0.00013 0.8 . . . T T
Period 3 0 57 0.376 0.226 —0.036 0 75'_ &3 E% 3 eo |
Period 3 0 1824 0.0237 0.0112 -0.000803 = | |
Period 4 0 92 0.272 0.193 -0.01910 07k E i
Period 4 0 2944 0.0156 0.00946 —0.00523 - % 1

0.65 1 | 1 1 1

1.lSM hCL hCL2 hMCC h

Entropy Estimates

Auic2hy + (log,e)(M—1)/2N with M the number of non-
zero P(i—*), which we estimate as the number gf>0 FIG. 3. Entropy estimatorénean+ sample standard deviatipn

actually observed. Our corrected estimafqncc weights evaluated from 100 samples of Markov chddn for L =500 (top),

ﬁMLC by w. This corrects for the bias at leaves, but not forL__SOOO(bOtt(fm)' §°I'dﬂc'm|?s are fofA|=3. From left to right,
bias from estimating model structure and thusfrom the estimators aréisy e Ntz huce followed by the actual entropy
finite data. That would appear to be a very difficult quantityrate'
to correct in general circumstances; however, via simulatiorq|A| =2) depending on whether the first or second nonzero
it typically appears to be less important than the bias on theransition is taken in each row. In the first case, the state
leaf nodes. structure is directly observabléand the pruning method
We compare results to a recently proposed estinf@®fr finds the first-order Markov structureln the the latter
that operates on an entirely different principle, string match-case—a hidden Markov model—approximate proxies for the
ing, the core technology of dictionary-based universal codingptate are automatically reconstructed by the modelers. Figure
algorithms, e.g., Lempel-Zif24]. With time indexi and in- 3 shows estimators on resimulations. The context-tree meth-
tegern, we defineA!! as the length of the shortest substring 0ds outperform the match length estimator: the resampled
Starting atsi that doeshot appear anywhere as a Contiguous distribution of estimates from tree methods includes the true
substring of the previous symbolss;_,,...,si_;. The value, whereas for thigy, truth lies significantly outside its
string-matching estimator ifgy= logn/(n~*=_ ;A" Since distribution. The results are similar on other artificial chains,

hsy does not arise from an actual lossless code, it is nolf’Oth time reversible and not.

necessarily biased from above, unlikg, . It is not neces- Tﬁe next gxample Is the logistic .mapH.l:f(x,]).:l
sarily unbiased for any finite either, however. To imple- —&%n. In continuous space, the map is so simple, it is never
ment it with N observed symbols, we first remove a small2 challenge to model, but once discretized it is not trivial.
numberA of symbols off the end and then split the remain- SYMbolizing at the critical poink=0 gives a generating
ing into two halves. String matching begins with the first Partition for 0<a<2, and by the Pesin identith=hys
element of the second halfN-A)/2+1, and examines the =M With A thNe Lyapunov exponent on an ergodic trajectory:
previousn=(N— A)/2 characters. The length excess pad- M= lIMn_.Zi= 110, (x)|. We estimatéis via A on a very
ding is necessary to allow string matches from the end local®ng (10) trajectory. The lower panel of Fig. 4 shows results
tions of the match bufferA is presumed to be a few times IN @ generic chaotic regiona=1.8. Compared to the

longer than the expected match length)~logn/h. S —
Table | shows results on simple systems. The context-tree - . .
estimators perform well in all cases, whereas liag per- QO'ZZ % g
forms surprisingly poorly on high entropy cases. Even on o1l . ° 2 3 ]
deterministic systems where one might expect string match- L * ¢ . ]
ing to prevail, context-tree methods are superior. The pruned o ]
context tree induces a deterministic state machine on peri- 0.75 . . . T .
odic data;ﬁMc is thus zero on these sets. The next system is 071 % ]
a first-order Markov chain withA|=3, with two cases, the =065k % ]
state directly emitted and not. The transition matrix is ;)6- s % ] s . % ]
0 1/3  2/3 0~55_ hl hl hl 1 I
1/4 0 3/4 SM CL CL2 hMCC

M= , h(M)=0.7602. (12 Entropy Estimates

FIG. 4. Entropy estimatorénean* sample standard deviatipn
evaluated from 100 samples of discretized logistic mép+1)
We estimate entropies from finite samples of simulation. Ei-=1—ax(n)?, a=1.405 (uppey, and a=1.8 (lowen. N=5000
ther the state itself is emitted4|=3), or 0 or 1 is emitted (circles andN=500 (diamonds.

2/10 0 8/10

056209-5



M. B. KENNEL AND A. I. MEES PHYSICAL REVIEW E66, 056209 (2002

previous systems, the estimated model structure is substan- TABLE Il. Coding redundancy per symbol for logistic map.
tially more complex(more important deep nodebence the Mean and sample standard deviation over 100 independent samples

difference betweeﬁCL andﬁcu or F\MCC is larger sinceﬁCL of N=10000. Lower redundancy implies a superior probability

contains more model redundancy. The match length estima-

model and/or a less complex model.

tor performs well here, but the bias is still smaller with

" Compressor a=1.8 a=1.405
hyce- The upper panel of Fig. 4 shows results at
=1.405, only slightly above the period-doubling accumula- CTW 0.02700.0067 0.02530.0028
tion point, i.e., the “edge of chaos.” Here the entropy rate is  MPLtree 0.0304-0.0065  0.027%0.0028
positive but small, and thus the effective depth of the tree Markov optimal 0.047%0.0070  0.04320.0029
( lexit h Agaith id h Markov D=4 0.1221-0.0062 0.1156:0.0004
lconspb.ex' Vd grot‘."’s :"uc arg?]r't galMycc provides tﬁ 4. MarkovD=8 0.0478-0.0070  0.08150.0020
namics exhibit many long near repeiiions where sying MAOVD=12 0109300088  005930.0088
matehing should be 3’00 ) g P 9 MarkovD=16 0.2094-0.0102  0.0455 0.0102
Good compression performance implies an upper bound gzip 9 0.09900.0043 0.2532:0.0048
bzip -9 0.0752+0.0041 0.3222:0.0079

on relative entropy between the true and estimated distribu-
tions, hence good compressors are good modelers. The pér-
symbol coding redundandy~'p=L/N—h is an estimate of MDL principle and sequential coding is a significant win, but
the Kullback-Liebler distanc® (p|q) between the true and it takes little extra effort to find the MDL variable-order con-
the estimated probabilities, and thus the estimated and thext tree, which almost always outperforms the fixed-order
true stochastic dynamical systems. Most applications of théree.
empirical symbolic dynamics in the literature explicitly or ~ Unlike string matching, context-tree methods provide an
implicitly use fixed-order Markov models, e.g., estimationsexplicit probability model and thus we maymulatefrom it.
of fixed-length word probabilities. The MDL context tree We fix the estimated model after all the input data have been
provides an explicit symbolic predictive model from the dataobserved, and resimulate from its probability distribution.
and should be substitutable for fixed-order Markov models inThat may be full CTW via Eq(7) or, more easily, the state
most circumstances and usually provide equal or superiamachine defined by the pruned tree or Markovized version
performance. We compare redundancy of the variable corthereof. We show examples of their ability to capture and to
text trees to fixed-order Markov models, i.e., trees where alteplicate nontrivial features of some observed streams. We
probability estimates occur at a fixed defithlts codelength compare various statistics from resimulations from an esti-
is the sum ofL, at all extant nodes of the full depfh tree, mated model to those evaluated on a long sequence from the
plus that of the one structure parameferwhich the classi- actual dynamical system. We demonstrate the successful
cal Elias delta codg25] may encode in no more than generalizing modeling power for trees beyond simply mini-
Lintege(D) =1+log(D+1)+2loglog20+1) bits. The Mar-  mizing the compression ratéor which they are explicitly
kov model codelength is thuslLyy(D)=LiyegefD)  designed and that modeling and simulation appear to add
+ ZNoded-e - We include the startup costs similarly with tee  few artifacts. We do not claim that most natural dynamical
construction. This is a fair codelength because we couléystem “are” strictly in the class of finite-depth tree-
transmit the dataset with this number of bits. We thus alsstructured information sourcégtree machings but suggest
claim a MDL model selection criterion for fixed-order chains that such models may often be good approximations given a
using sequential coding. If one wishes to examine distribustable statistical estimation method. Simulation—using a
tions of lengthW words, then withD* =arg mirpLym(D), MDL-pruned tree as a stochastic information source—is
the appropriatéVis D* + 1. simple and rapid. We initialize the history by sampling a
Table 1l shows average redundancies from 100 samples sftate fromu and recording its implied context. Iteratively,
the logistic map fom=1.8, in a generic chaotic regime, and emit a symbol according ti) at each deepest matching node,
a=1.405 barely above the chaotic transition. Estimated fromappend to the buffer, and find the next context. One may also
a long ergodic sample via the Lyapunov exponent the ensimulate even more rapidly from the equivalent state transi-
tropy rate ishy,,=0.5838 bits/symbol fora=1.8 andh,s tion graph knowingP.
=0.068050 fora=1.405. The weighting tree estimator  An immediate question is “what distribution is appropri-
(CTW) is superior, followed closely by the MDL tree then ate for emitting symbols given a state”? We recommend us-
the Markov chain with the optimal ord@&*. For fixed-order ing the naive estimator, i.e., E¢) with 3=0, so that the
Markov chains,D* depends significantly both oN (not  symbolic topology includes only transitions actually ob-
shown) and the structure of the dataset. Wreen1.405, the  served in the input data. There may be forbidden transitions,
typical D* found is surprisingly deep, on an account of theand in a resimulation it would generally be wrong to create
significant stretches of “near periodic” orbits exhibited by them, which would happen witB>0 or generally any prob-
the map close to the edge of chaos. For instabces=24,  ability estimator that assigns a finite probability to a never
implies a naive 2* bins, far larger than the number of data. A before seen symbol emission. This is the moral equivalent of
typical “rule of thumb” for guessing at the ordex priori by  resimulating from a discrete iid distribution by randomly
requiring a certain estimated minimum bin occupation suctthoosingwith replacemenfrom the set of observed symbols
as D~log,(2N) may be quite flawed. Selecting with the  and no others. The densitywith the observed counts Ris
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the limit of such a simulation. It may seem inconsistent to 1 18 1—§F—§F—f
use>0 for compression ang=0 for simulation, but it is §33 &0 e B %
not unreasonable. For the first case, one is computing a quar ?Eié h 09 !gi i;; l"' ‘“
tity that is nearly the log likelihood of the observed data and ¢ gl b o 0.8 iotw =l
the estimated parameters give only a prior distribution for 643 61 L3 BRI
parameters before data have been seen. For the second, o 0.7} %15 :;‘ 07 == '5;,; oh i"-
maximizes thepost-hoclikelihood of the emission param- - - e e me
eters of thegivendata already observed and the topological >0'6' S= o3Im o=k s >°'6' S= o3z ooz
structure already estimated, i.e.; a classical statistical proce g gl R 0.5 5
dure. A universal coding algorithm must assign a probability _gg %i ,-,;;2 51
to any possiblestring in the alphabet, but a simulation is 0.4} - 0.4} - -
obligated to assign positive probability only to those strings === if 31 =we= 3 LY
that may be emitted from the model. Nevertheless, the issut 3 Rrmm e omE 0.3 Rmmm smoma
of whether to usgg=0 or >0 for simulation has a univer- 0.2} 0.2}
sally correct answer, as choice is a matter of statistical as ———- _—
sumption and viewpoint. 0.4, o5 ] 0.15 o5 ’
We may represent a symbolic sequencs; X X
€{0,1,...|A|—1} as a sequence of points in the symbolic o -
plane & ,y;) e [0,m]><[0,m];m=(|A| —1)/(a|A| —1) with _ FIG. 5 Symbologram of a sample_ of dls_cretlzed logistic map
time series ath=1.8 (left), and from simulation from MDL tree
> g s model estimated on a distinbt=1000 length dataset.
A i+1-k i+k
yDE| 2 S Y =
k=1 a“|A[* k=1 A does not necessitate a large modeling deviation, however,

and universal coding provides a guarantee that the model
Swill converge to the truth in some useful measure.

We turn to a more complicated system, discretized
mples from the “Lorenz 1984” attractor; a tiny geophysi-

We define the projection of a symbolic sequence on to thi
plane as aymbologramThe x coordinate of a point repre-
sents the past history with smaller deviations correspondinga

to more ancient symbols, and tlgecoordinate the future in cal model with attractor dimensiod~2.5 [27]. Now the

imzzggz;t\;\éay.eﬁ;)éngrCs:arlfotrmaatéorr]nzglucchago?#cr%i arc]iiscretization is not théunknowr) generating partition, yet
analoav to theginvariant set of' ad ngmical g ste’m in Cog_the projection down to a symbol stream still produces a non-
. 9y : y y .~ " trivial stochastic symbolic information source that we wish
tinuous space. Fo=1, there is guaranteed to be a unique

correspondence between the points in the symbolic plane at model. Because it was sampled from a continuous ordi-
ry differential tion and not a map, the entr is rather
the symbol sequencé26]. Furthermore, fow=1, the frac- y differential equation and not a map, the entropy is rathe

tal information dimensiorD; of the symbologram scales low, h/logy|A|~0.24. Consequently, the symbologram with

with the Shannon entropyd,=2h/log|Al. The symbolo- a=1 is thus rather sparse and we thus display in Fig. 6 the

gram summarizes both the stationary distribution of the sym9rlglnal and simulacrum symbolograms with=1/2. The

o -~ A estimated context tree had approximately 200 terminal
bo]s and the gondltlonal predictive distribution, i.e., the evo'nodes; 400 after Markovization.
lution law. Figure 5 showsa=1 symbolograms for the
logistic map, and a simulation from a tree estimated from a
different sample of length 1000 of the original system. There
is obviously a quite substantial resemblance between the ag I
parent invariant densities between them, meaning that the
probability of seeing a string in the original is quite close to 5|
that assigned to it by the tree model. That, of course, is the
goal of source coding. Estimated frol= 10 000, the fig- 2/:,

ures are nearly visually identical. \

One might evaluate a Kolmogorov-Smirn@S) test for > 2
significance in the difference in cumulative distributions,
given 10 000 points the KS test does indeed accept the nul 1.5f .
hypothesis foix or y. In practice, though, rejection is almost
certain asymptotically. Given sufficiently long samplesid 1
one may simulate arbitrarily longthere will be sufficient
data that the test’s null hypothesis is violated even though the
deviation in the cumulative distributions is small in an abso-
lute sense. Only if the model giveactlythe same prob- 0o
ability assignment as truth would the test always be ac-
cepted, and that would occur only in the unlikely case where g5 6. Symbologram ¢=1/2) of output from Lorenz 1984
the system is a tree machine and the estimated probabilitigs7) model heavily discretizefleft), and from simulation of context
happened to equal reality exactly. Statistical significanCree estimated fronN= 10000 symbolgright).

05
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TABLE IlI. Kolmogorov-Smirnov test acceptance probabilities ness; a quantification of the intuitive notion that both very
on observed distribution of recurrence times for various Stringsdeterministic(fixed point and periodic motiopsand very
comparing 500 000 symbols from logistic map to a simulation fromyandom(iid noise) behaviors imply low complexity with the
a MDL tree estimated on 10 000 symbols. Recurrence diStribUtionsinteresting dynamics” possessing higher complexity. Ac-

of most strings matched, except for consecutive 1's. The Iower-righ&Ording to Ref[28], a causal state is an equivalence class

block of strings involves a deterministic transition so that sequencegver histories so that all members of the class have the same
of L=7,8,9 strings have identical distributions as 0110100 is al- L. L e
ways followed by 10. conditional probabilistic distribution of observables for the

infinite future. The complexity is then the Shannon entropy

String p value String p value of the distribution of causal states observed weighted by the
measure of the process. It quantifies “how much information

110 0.6048 101 04112 (o | need to specify to set the current state so that | may
1101 0.5835 1010 0.4075  gptimally predict the future,” i.e., the quantity of historical
11011 0.4690 10101 0.5583  information stored in the system. White noise processes have
110111 0.1122 101010 0.9098  gne state, periodic processes have only as many states as the
1101111 0.3081 1010101 0.7990  period, and thus low complexities. Complex processes have,
11011111 0.3172 10101010 0.3472 of course, more internal states and thus complexity. Our
11 0.2270 point here is that the Markovized tree states satisfy the cri-
1111 0.0424 01101 0.2376 teria of Ref.[28] for being a causal state, and we have a
11111 0.7474 011010 0.1633  ropust algorithm to find them from the observed time series.
111111 0.0014 0110100 0.4412  Fyrthermore, the minimum description length principle gives
LLLLLL 5.8361x10°° 01101001 04412 an explicit and attractive balance between “prescience” and
11111111 0.0541 011010010 0.4412  «complexity,” which is essential to the inference of minimal
111111111 0.0443 0110100101 0.1309  caysal state machines from finite amounts of data. The com-

plexity measure isC;L:—Eile,ui log,u; over stationary

Approxima’[e|y matching Symbo|ogram5 means that probprObab”itieSMi for those states automatica”y discerned by
abilities of words of consecutive symbols are successfullyfhe context tree. As expecte@,, measure is zero for the
replicated. We now examine a more complicated tasklogistic map fora=2 (when the signal becomes random bi-
matching a statistical distribution not closely modeled by thehary) and increases as the bifurcation parameter decreases,
fitting procedure. From a long sample, we extractréur- ~ and diverges at the period-doubling accumulation point, the
rence timeof some symbolic string, i.e., the time intervals edge of chaos, where the system can no longer be modeled
betweennonoverlappingobservations of any arbitrary sym- Py the regular languages of finite depth context trees.
bolic word. The distribution of recurrence times quantify ~ Crutchfield and Yound29] and similarly, Carassco and
|Onger-range dependences_ Again for the |Ogi5tic map at Oncina [30], considered extracting probabilistic automata
=1.8, we estimated a tree from 10000 observations anffom observed data. Their constructions are quite different,
simulated a series of length 500 000, observed the distribu€lying on making equivalence classes among nodes in the
tion of recurrence times and compared to that observed on aiefix tree (depth is forward in time of the observed se-
identical-length set from the simulated dynamical systemduences. Compared to the present MDL tree method there
We compare the acceptance likelihood from theare significantly more free parameters, including an un-
Kolmogorov-Smirnov test, which compares the empiricallyknown “depth” over which one considers whether nodes
observed cumulative distributions. The previously mentionedorm equivalent states or not. We feel that determining this
issue still applies, but the results are sufficient to show trenddepth automaticallyand thus estimating word probabilities
and provides assurance that the model does not necessaryPrecisely the most difficult part of model inference. Some
fail to replicate the long-term as well as the short-term fea-Sort of criterion balancing statistics with complexity/depth is
tures. Table Ill shows KS rejectiop values for recurrence hecessary, in addition. Checking the more general node
times of some arbitrarily selected strings. As the test assumeluivalence condition requires more computational effort
independence, after the second match of a pair is fotimedr than context-tree pruning, but it does consider a wider class
time difference being an observatipme apply a length 500 of models as internal nodes “across” branches may be found

dead zone before searching for the next string match to begi#® be equivalent rather than only children versus parents.
a pair. This might mean that a smaller machine could be found,

implying lower complexityC,. Perhaps a MDL selection
criterion could be derived for a more general class of
context-type models providing the best of both methods.
The context-tree construction and, in particular, the We suggest some examples of how the context-tree meth-
equivalent Markov chain may provide a good estimate forods presented here could potentially improve a number of
the “e machine” of Crutchfield and ShalizR8]: a represen- existing algorithms and analyses of data in the literature,
tation of a process consisting of the minin@dusal states though it is beyond the scope of the present work to actually
and their transitions. Their goal is to define firmly a usefulperform all these analyses with new methods and quantify
and robust notion of “complexity” distinct from random- the improvement or lack thereof. In general, any situation

IV. DISCUSSION AND SUMMARY
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requiring a conditional entropy estimate should be amenable 1.8 . . .
to the context-tree estimator, if the dynamics are sufficiently
well described by a regular language or an approximation 1.6% . . o
thereof. Essentially, the influence of the past has to decreas e W
sufficiently quickly. There are examples of dynamical sys- g1.4F-~-~-
tems, which do not appear to satisfy this criterion in variousg
forms, but in general any data analysis on sufficiently non-2 45t NNy )
stationary dynamics is dubious from the start. The boundaryg ‘
of exactly which classes of dynamics are efficiently estimat-§
able with context trees is not presently known.

Frasel 31] studied information-theoretic quantities in ob- I |
served noisy chaotic systems and pioneered the now |~~~ i
standard use of mutual information as a criterion for select- | N o
ing time delays in continuous state-space reconstruction ™ ~
given x(t) one estimates mutual informatiol(X; s ;X¢)
=H (X4 5t) —H (X4 5/%). The first local minimum is %00 -50 0 50 100

t+ ot t+ otl Xt
deemed to be a good reconstruction parameter. Generalizeu &
beyond two scalars, theifferential redundancy FIG. 7. Symmetrized cross entropy estimates flow-precision
noisy x and z coordinates from Lorenz 19847] model, 20 000
samples att=0.16. Curves without symbols are with fixed-order
Markov with depthD =4,8,12. Curves with symbols aFQ;L and

huwcc. The context tree methods correctly fid=In,|A| for ||
—oo, still preserving a comparatively deep relative dip&t0,
demonstrating dynamical state correlation.

\\\\\

diti

avg con

R’ (Xet st|X) 21 (Xer 515%0) = H(Xew o) — H (Xt st/X¢)
(13

is the amount of information in the new observatiqn s,
which is predictable from knowledge of the “current state”
given by the vectox,=[X,X;{_1,Xt_2, . ..]. Fraser shows  — N .
[31] that for data observed from a chaotic dynamical system N(9)= E[h(ri+5|5i Si—1s - ) Th(sigririog, ).
as the discretization intervals approach zérmreasing al-

phaber and the dimension of the conditioning vector ap- Our example is again the Lorenz 1984 model. We examine

proaches 'nfm'ty’Rﬁt%A_(&.)hKS. W'th his the Kolmqg- correlation betweerx and z components, sampled ait
orov entropy rate, a ijnam'.ca' Invariant of the continuous_ 0.16. To ensure a challenge white Gaussian noise of stan-
?r?/;é;rgn;—:rﬁ ];Ogggl?rté%] gfggsgugggﬁ tr?:iseentirsoz)r/\;?eu dsig'?alta) eard deviation half of the clean time series was added, sub-
but will have hys=0, becauséd (X, 1)=H(Xe. 1|X,). sequently symbolized withA|=3 using equiprobable bins.

Although we do not presently deal with the issue of dis_Figure 7 compares re;ults from context-tree methods to en-
cretization to symbols;, we point out that it is trivial to tropy estimates frorr_1 fixed-order Markov mod_élke aﬂ)_(_ed

X o X word length. An arbitrary word length results in a significant
estimate t[he condlltlonal e.ntrop‘g/step.s ?head mste.ad Pf one systematic bias. The shallow word &4) correctly finds
by rszplacmgsi+1 thh Si+ 5 in EQ.(2) giving appropriatéic,  conditional entropies tending to the unconditioned entropy
andhc, (but nothyc!) estimators for the second conditional In,3~1.58—no significant predictability—for larges|, but
entropy term in Eq(13). The first term is the zero-order has insufficient discriminating power to discern much corre-
entropy estimate, e.gl,./N at the root note of the tree. We lation nearst~0. Longer word lengths produce significant
can thus estimat®’ (x,, /%) safely taking the limit of the overall biases in the level. Context-tree methods best show
infinite conditioning context with arbitrary depth CTW. This power without large systematic bias.
circumvents the usual exponential explosion of bins, which The present authors previously ugd@] a state selecting
practically limited the direct application of histogram-type context-tree source modeler to test for dynamical stationarity
information estimators in Ref31] beyond two dimensional. by combining traditional frequentist tests at the “encoding

We may similarly estimate the conditional entropy be-nodes.” An undesirable artifact is that early points get en-
tween the information source$(R|S) provided simulta- coded to shallowly because the choice of encoding node is
neous observationss(,r;), and replacings;, ; with r;, s in made sequentially. Thpost-hocMDL tree is a cleaner and
Eq. (2). This important generalization resulting from an ex- reliable method of finding the appropriate states. In Ref.
plicit model is not easily available to string-matching meth-[33], Daw et al examined statistics comparing “forward”
ods. Referencg32] addresses detecting whether or not twoversus “backward” observations of symbolic words formed
signals, e.g.x(t) andy(t) are projections of the same dy- from a time series. Linear Gaussian processes and static non-
namical system. When it is so, the conditional entropylinear transforms thereof produce statistically time-reversible
h(Yis sl%) has a minimum neabt=0. In Ref.[32] the signals. Thus the observation of statistically significant tem-
authors use fixed-length words and estimate entropies ngoral irreversibility, as found in chaos or other nonlinear dy-
ively. We suggest using tree estimators in the symmetrizedamics, precludes that class of signals, the same class which
Cross entropy is the null hypothesis of many “surrogate data” resimulation

=
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methods. Referende3] gives a direct statistic and test for tistics versus resimulation, but the object of desire is the
reversibility, bypassing the need for Monte Carlo simulation.indentification of individual states that are particularly pre-
However, it used a fixed word length that was an arbitraryscient.

choice. Here we suggest using the MDL tree to find the |eshef35] symbolized interspike intervals in from a lam-
proper choice of words, the terminal node contexts, and corprey neuron via a more interesting technique, i.e., fitting, in
tinuing with the procedure of Ref33]. One would estimate continous space, a vector of successive observations to lo-
the tree structure from data comprising the time series rugally linear two-dimensional map and then reducing to dis-

both.forward and backwards. The MDL tree finds especiallyclrete symbols the eigenvalue plane that results with the sym-
predictable nodes; these states correspond to more clear eWols corresponing to, e.g., “stable node,” “stable focus,”

dence of “dynamics” and hence we expect them to be moreynstable focus,” “direct saddle,” “flip saddle,” etc. There

irreversible. Cover and Thom4&0] provide an explicit for-  was a significant correspondence between interesting quali-
mula(4.40 for the entropy rate of a time-reversible Markov tative changes in the observed time series dynamics and the
chain. As an alternate method for detecting irreversibility,symbol transitions, but the authors found that a first-order
one could compare thbyc on observed data to that ex- model is insufficient, and suggested using a hidden Markov
pected under the reversible hypothegishere any time- model in future investigation. We suggest that in situations
reversible Markov chain is equivalent to a random walk onwhere there is no obvious intuitive external guidance for the
an undirectedbut weighted graph The transition probabi- effective size of the structure or complexity of the data, an
lites on the discovered provides all the quantities needed. adaptive context tree could be superior. Classical estimation
In a biological application, Steuet al.[34] examined the of hidden Markov models by expectation maximization re-
entropy rates derived from a binary symbolization of inter-quires the structure be designagriori and then the transi-
spike intervals measured in paddlefish and crayfish mechattion parameters estimated, though there are now adaptive
oreceptors. In this system predictability is modest, but thegbut often slovy techniques in the literature.
authors did find that certain higher-order Markov models We have introduced the use of modern source modeling
(e.g., order 4 or pbdisplayed superior predictabilitfower  techniques traditionally used for data compression for the
conditional entropythan the low-order models, and that this purpose of analyzing observed symbolic time series from
excess predictability was localized to a small number ofdynamical systems. The context-tree weighting and maxi-
symbolic contexts found to be reasonably experimentallymizing algorithms are theoretically attractive modeling tech-
stable across animal subjects. The authors had to validate tiéques with good performance, one free parameter, and effi-
choice of Markov order with Monte Carlo surrogate datacient implementation. Given a tree machine, we have an
techniques. A context-tree method would avoid the tedium oflgorithm to convert it to an equivalent first-order Markov
some validation simulations, moreover the MDL tree algo-chain that opens additional opportunitites. We demonstrate a
rithm intrinsically attempts to pull out of the data from those number of good performing entropy estimators and then
particular contexts that give excess predictability. Theirshow the success of the tree methods on modeling observed
choice of Markov order was based on comparing global stadata via resimulation.
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